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Abstract. We study the reconfiguration of the angular resolved photoemission spectrum near M point
which occurs in BizSroCaCuzOg upon cooling below the superconducting transition temperature. Restrict-
ing our attention to the case of underdoped samples we offer a phenomenological mechanism-independent
explanation for this effect. It is demonstrated that under certain circumstances the emergence of a peak
can be linked to the normal state pseudogap. All of the basic experimental observations, including weak
peak dispersion, ‘dip-and-hump’ shape of the superconducting state spectrum and appearance of the peak
at the temperatures somewhat higher than the critical temperature, are naturally explained.

PACS. 74.20.Mn Nonconventional mechanisms (spin fluctuations, polarons and bipolarons, resonating
valence bond model, anion mechanism, marginal Fermi liquid, Luttinger liquid, etc.) — 74.25.Jb Electronic

structure

1 Introduction

A sharp peak in the angular resolved photoemission spec-
trum of BigSraCaCuz0g (BSCCO) is the major subject
of this paper [1-3]. This peak emerges from an incoher-
ent background at temperatures somewhat higher than
T. and persists all the way down to T' = 0. It is located
around (7,0) (in the units of inverse lattice spacing) in
the Brillouin zone. Substantial efforts have been invested
into uncovering the nature of this peak. It was assumed
that this might provide us with an important clue about
the mechanism of the superconducting state. In this pa-
per we will argue that the peak can be explained on purely
phenomenological grounds. Our method enables us to ex-
plain qualitatively the most salient features of the peak
behavior.

Unlike overdoped cuprates, it is believed that for
the underdoped materials the normal state single-particle
Green’s function can be qualitatively characterized by the
presence of the pseudogap — a depletion of the spectral
density A,x(w) = —2Im Gpx(w) near w = 0 for k in the
vicinity of M point of the Brillouin zone close to the Fermi
surface (see Fig. 1b). The origin of the pseudogap is un-
clear at the moment. Yet, our method does not require
such knowledge.

The causality puts some constraints on the Green’s
function: its real part can be found according to the
Kramers transformation [5]. Then, for any reasonable
choice of ‘pseudogapped’ A,k (w) the function |ReGx(w)]
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has two maxima located approximately at the edges of the
pseudogap (Fig. 1a). We will show that those maxima are
responsible for the emergence of the ‘quasiparticles’ in the
superconducting state.

There are several microscopical theories which explain
the emergence of the peak below T, [6-8]. In the approach
presented by J.E. Hirsch charge carriers (holes) are cou-
pled to a bosonic bath. If this coupling weakens with the
growth of the local hole concentration the superconduct-
ing pairing driven by the kinetic energy occurs: the kinetic
energy benefits from the effective reduction of the boson-
hole coupling. Another consequence of this boson-hole de-
coupling is the increase of the quasiparticle peak weight.
In the paper by M. Eschrig et al. a model of the elec-
trons interacting with a magnetic resonance has been dis-
cussed. It is claimed that this model reproduces correctly
the most salient features of the photoemission spectrum.
This paper was a development of a previous work by M.
Norman, H. Ding and collaborators [9,10]. The latter is
important to us since it has some similarities with the
present approach. In references [9,10] the authors concen-
trated their attention on a step-like feature in the electron
self-energy which could explain the shape of the spectrum.
In order to account for such a feature they postulated the
existence of a collective mode below T,. This mode has to
disappear above T, for the model predictions to be consis-
tent with the data. It is believed that this mode and the
magnetic resonance mentioned above are the same entity.
Many-body investigation of the peak formation was under-
taken by Carlson et al. They assume that in the cuprate
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Fig. 1. Qualitative structure of the normal state Green’s func-
tion for different values of we /wq. The real part of Gy, (w) (panel
(a)) can be obtained by applying Kramers transformation to
the imaginary part, panel (b). The solid line (dash-line) corre-
sponds to we /wg = 0.1 (we/wy = 0.3).

materials phase separation takes place. It leads to the for-
mation of stripes with every stripe being 1D metallic con-
ductor. Using bosonization the authors demonstrated that
below T, the single-particle spectral density develops a
delta-function peak at the superconducting gap energy.
In contrast to these studies, we will deduce this peak
without resorting to microscopical considerations. If one
assume that the anomalous self-energy is big enough it
is possible to deduce the spectral function peak from the
analytical structure of the normal state Green’s function.

2 Analytical structure of the single electron
propagator

In this part of the paper we will calculate the spectral
density in the superconducting state. Let us derive first
an auxiliary relation between the Green’s function of an
electron and a hole. The spin-up electron retarded prop-

agator is: G°(t) = —iO(t)(c;(t)c](0) + cl(0)e;(t)). The
propagator for a spin-up hole:

GM (1) = ~i0(1)(c] (t)e,(0) + ¢, (0)c] (1)
= (i0t)(c] )c,(t) + ¢, (t)c] (0)>)*
- (i@(t)(U;ch(O)Unglci(t)Ux
+ U e (DU, U e (0)U,)) = (~Go(1)"
(1)

Here U, is the unitary rotation operator. It rotates the
spin of the electron by 7 around z axis: U, tc U, = i0,5C
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and U, lcl U, = —ia(‘iﬁcg. The ground state is invariant
under the action of U,. After performing Fourier transfor-
mation for the last equality one arrives at:

GMw) = = (G°(~w))". (2)

Assume now that the system at hand is in the normal
state but not far from the superconducting transition. Its
retarded Green’s function in Nambu representation can be
written as:

~ Gnk(w) 0
G”“(“’):< 0 G;_kw))

Gnk(w) 0
- ( 0 —sz<—w>> 9

In this form it describes independent propagation of an
electron and a hole. Spatial inversion symmetry guaran-
tees that G_x = Gk.

This function G,, satisfies Dyson’s equation:

(w = Ho)Gric(@) = T+ Lyse(w) Gxe (w). (4)

Here %, is the retarded self-energy in the normal state:

Sy = (T ®)
" - 0 =20 (-w) .

Next, we change, let’s say, doping and drive the system su-
perconducting. New Green’s function G satisfies an equa-
tion similar to (4) with new self-energy Y = Yok + 6k
where ¢ given by:

fuc(w) oie (w) ) ' (©)

o) = <<af:‘<—w>>* — (e(~w))"

Here the relation Xy5(w) = (X21(—w))* between two off-
diagonal elements of the Nambu self-energy has been used.
It follows from an equation G12(w) = G5, (—w) for anoma-
lous propagators which, in turn, can be obtained along
the same lines as (2). The point of this derivation is to
establish the analytical structure of the self-energy in the
superconducting state. This will be used in our discussion
of a sum rule. .

Combining the above equations one gets for G, the
expression:

S (R A (")

3 Green’s function in the superconducting
state

The equations derived in the previous section are com-
pletely general. In order to proceed further we need to
make a simplifying assumption: near the Fermi surface
electronic (w < 0) and hole (w > 0) parts of the spectral
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function are symmetric for small |w|. One can express that
as:

A (w) = Ax(-w) (8)

for |w| < wy where wy is the size of the pseudogap. Ex-
act particle-hole symmetry is absent in the cuprates. We
would like to argue, however, that (8) holds at least ap-
proximately for k close to the Fermi surface. Firstly, the
tunneling data [11] shows that the pseudogap is symmet-
ric with respect to voltage polarity change. One might
think that this tells little about validity of (8) since the
tunneling differential conductance measures k-integrated
spectral density. However, Ding et al. (inset of Fig. 1b
of Ref. [2]) demonstrated that scanning tunneling micro-
scope (STM) spectrum multiplied by the Fermi distribu-
tion function at appropriate temperature coincides with
the angular-resolved spectral density at k = (m,0). This
means that STM spectrum equal to Ak (w) for w < 0. It is
natural to expect that the spectral density coincide with
the STM conductivity for w > 0 as well. Thus, the symme-
try of the STM data suggests the symmetry of the photoe-
mission spectrum. Although, it is not our goal to construct
a theory of tunneling into cuprates we may speculate that
this agreement between the tunneling conductance and
the photoemission spectrum is not a coincidence but a
consequence of the inter-plane hopping matrix element k-
dependence: as discussed before [12-14] the inter-plane
hopping matrix element is at its maximum for the elec-
trons with a momentum parallel to (7, 0) and it is vanishes
along Brillouin zone diagonal. Therefore, it is conceivable
that the most of the tunneling current is carried by the
electrons near (m,0). Secondly, we would like to direct our
attention toward the discussion of reference [15]. In the
latter paper the angular resolved spectrum at k = kg
was analyzed with the help of a momentum distribution
sum rule. Theoretically, it was proved that an expression
1— [3° dw tanh(w/2T) (Ak, (w) — Ak, (—w)) has to be tem-
perature independent provided that (8) is true for small
|w| [16]. This expression can be easily extracted from the
data since it is proportional to the integral over w of the
photoemission spectrum. The spectrum for k near (m,0)
was integrated, and the integral showed no dependence on
the temperature, supporting the assumption of the sym-
metry. Finally, we would like to mention two other pa-
pers [17,18] where (8) was assumed to be true. Thus, we
believe we have enough evidence to treat (8) as a rea-
sonable approximation for small |w|. The structure of the
background for |w| > w, is of little interest to us since
the positions of |ReG,| maxima are insensitive to the
background. For the purpose of simplicity we will assume
that the background is also symmetric. That is, (8) is
true for any w. In such a case Green’s function satisfies
Gk(—w) = —Gf(w).

A consequence of the symmetry is a constraint on the
self-energy in the superconducting phase:

Uf(w)ew)
o (w)

fic(w)

ok(w) = (Jf(w)eid’ (9)
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where ¢ is a real number and the functions p and o4
satisfy the following:
(—w) = —pi(w) and ol (~w) = (oi (@))*.  (10)
i (—w tr(w) and o w oy (w))*.
In terms of these functions the superconducting spectral
density equals to:

Gnk - (Gnk)2 Mk ) 11
u@wﬁwﬂ%%ﬁ} .

Let us simplify this equation assuming that w. < wq. If
the system is close to the transition point then 6G,, is
small and the denominator of (11) is close to unity every-
where except the edges of the pseudogap. At those points
(ReG)? is big (~ logw,/we) and one should be more
careful. If we are away from the Brillouin zone diagonal
where o4 is zero then to the second order in ¢4 and to
the first order in p = 090A|2) we find that the denom-
inator is equal to 1 — (¢#*)?(G,,)?. In this expression the
terms like G, have been dropped. Although, they are of
the order of |02 we presume that they are smaller than
(Re G,,)?|0|? since the latter is proportional to the sec-
ond power of Re GG,, which is big at the pseudogap edges.
This gives for the spectral function:

~ Ank (w)
1= Re { (0(@))”} (Re Goac(w))”

Ask = —2Im {

Ask(w)

;o (12)

where we omit (G,)?u term in the numerator assuming
that it is small compare to G,,. The last formula is the key
to understanding the appearance of the ‘quasiparticles’
below T,. At the edges of the pseudogap (Re G,,)? peaks
up, the denominator gets smaller and the spectral function
develops a sharp maximum. This is true provided that

Re { (O"A)Q} is positive at the edges of the pseudogap [19].

4 Spectrum properties

Now we would like to analyze (11) and (12) to obtain
simple properties of the ‘quasiparticles’ which can be com-
pared against the experiment.

First, it is clear that the position of the peak in the
frequency domain is determined by the pseudogap edge.
Therefore, we expect to see strong correlation between
the size of the pseudogap and the frequency (binding en-
ergy) position of the peak. This is precisely the effect re-
ported in [1] where temperature dependence of the peak
frequency was compared against that of the pseudogap
size. Figure 2c of that paper shows that the peak posi-
tion traces the size of the pseudogap. Similar phenomena
is seen for the peak dispersion (binding energy wvs. k). As
reported in [20] the pseudogap at (m,0) is virtually k-
independent. This is consistent with the weak dispersion
of the peak itself [21].

In order to obtain the shape of the spectral function at
k = (m,0) we perform simple numerical study. We model
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Fig. 2. Self-energy graphs corresponding to the Green’s func-
tions from Figure 1.

—
@]

u, o and A, as

p=0
Reoi = o' exp(—(w/w?)?)

Apx =cl ™! (arctan ((w—wy) Jwe)

— arctan ((w + wg)/we) + n) exp (— |w/T]).
(13)

The energy w. determines how abrupt the edges of the
pseudogap are, I' mimics the normal state scattering rate.
The constant ¢ is of the order unity. It has to be deter-
mined from the sum rule [5]:

/+°O d—wAk(w) =1

o (14)
The parameter w? describes the frequency dependence of
the anomalous self-energy. It is commonly put equal to
infinity. This makes the anomalous self-energy frequency
independent. Below we will discuss both cases of finite and
infinite w?.

The imaginary part of ¢** and the real part of the
Green’s function can be found with the help of numerical
Kramers transformation. Fast decay of the spectral func-
tion (13) for w > I' guarantees that the procedure does
not have convergence problem at high frequency. Standard
numerical routine is enough to perform the transformation
with good accuracy. Overall, the results reported below
are quite insensitive to the high-energy properties of A,
as long as wy < I'. The real and imaginary parts of the
normal state Green’s function are plotted in Figure 1. Cor-
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Fig. 3. Superconducting  state  spectral  function
(As(w) vs. wjwy) for W/w, = 50, w’/w, = 6 and dif-

ferent values of 0"*/w, and w./wy. The left (right) column
corresponds to we/wg = 0.3 (we/wg = 0.1). The top (bottom)
row corresponds to 0 /w, = 30 (0 /w, = 20). The normal
state spectrum is given in a dash-line. The spectral func-
tions are multiplied by the Fermi distribution function with
T = 0.2wy.

responding self-energy components are presented in Fig-
ure 2.

Once the normal state Green’s function is determined
the spectral function in the superconducting state is de-
termined using (11). The resultant spectra for different
parameter values are presented in Figure 3 and Figure 4.
These two figures correspond to different values of w#
(wh/wy = 6 for Fig. 3 and w™/w, = 3 for Fig. 4). On each
figure the top (bottom) row corresponds to o /w, = 30
(04w, = 20). The value of w,/w, in the left (right) col-
umn is 0.3 (0.1). We see clear ‘dip-and-hump’ structure of
the spectrum for big values of oA, When this quantity is
small we find only a tiny bump or even a kink instead of a
well-developed peak. Such situation seems to be realized
in Pb-doped BSCO compound [22]. This angular resolved
photoemission study revealed no peak in the spectrum
(Fig. 4, right panel of the latter reference). Authors claim
that their energy resolution is high enough to observe the
peak should it be present in the spectrum.

By comparing different spectra from Figures 3 and 4
we can discuss the dependence of the spectrum shape on
the model parameters. Two parameters which affect the
spectrum the most are o /w, and w, /w,. The effect of o4
is obvious: the bigger the anomalous self-energy the higher
the peak. The ratio w./w, regulates the height of the peaks
of ReG,. This height is proportional to —log(we/wg).
Thus, the smaller this ratio the higher the peak in
the superconducting spectrum. For our method to work
the pseudogap must be quite sharp: when we /w, = 0.3 the
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Fig. 4. Superconducting  state  spectral  function

(As(w) vs. w/wy) for W/w, = 50, w?/w, = 3 and dif-
ferent values of 0" /w, and w./wy. The left (right) column
corresponds t0 we/wg = 0.3 (we/wg = 0.1). The top (bottom)
row corresponds to 0 /w, = 30 (0 /w, = 20). The normal
state spectrum is given in a dash-line. The spectral func-
tions are multiplied by the Fermi distribution function with
T = 0.2wy.

peak starts to vanish. The value of w” specifies roughly
the position of the hump. For w* = oo the hump is absent
from the spectrum — it is moved to infinite frequency.

We also notice that in order to have a pronounced peak
in the superconducting spectrum it is necessary for o
to be much bigger then w,. Superficially, this fact seems
to contradict the phenomenology of the superconducting
cuprates: according to the experimental knowledge the
energy scale A associated with the superconductivity in
cuprates is substantially smaller then the pseudogap. One
has to keep in mind, however, that except for the case of
the clean BCS superconductor the anomalous self-energy
o is bigger then this superconductivity energy scale A.
The ratio /A is equal to 1 + 1/27vw? + A? for a su-
perconducting alloy whose scattering time is 7 [23]. This
ratio equals to 1/wG)y, in theory of the strong coupling su-
perconductivity [5]. Both formulae offer similar estimate
for A. According to them A is approximately equal to
wo(w) /T (w) evaluated at the frequency equal to the gap.
In this expression I is scattering due to disorder (~ 1/7)
or due to interactions (~ 1/G,,). If we put w = w, we get
the following heuristic estimate for the superconductivity
energy scale:

A~ wyo?)T (15)

which is in the range 0.4wy + 0.6w, for all graphs in Fig-
ures 2 and 3.

Our definition (15) is intuitively appealing but non-
rigorous. Let us now explain physical significance of A.
When w,/w, < 1 and || < I it is possible to find the
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position of the peak as a function of anomalous self-energy
o analytically. To determine the peak frequency we will
show that the superconducting Green’s function has a pole
located at some complex frequency w,. The position of the
peak is given by Re w.. In order to find w, we first notice
that for small w, it is possible to continue analytically the
spectral function (13) into complex plain in the vicinity of
the pseudogap edges w = £w,. By doing such continuation
we have to remember that all singularities of the Green’s
function are located at Im w < 0 [5]. With this in mind
we re-write the spectral function near w = —wy:

o)
eI 'Im {bg(giiﬁ%%ilff)} (16)

where (2 is some constant which depends on global prop-
erties of A,; the value of {2 is of little interest to us here
because it is independent of oA, Since A,, proportional to
the imaginary part of G,, we conclude that, asymptoti-
cally,

Ap(w) =~ el (g — arctan (

c
Gn — *ﬁIngv |Z| < 17 (17)

where z = ((w + wy) + iwe)/f2. From (11) it is clear that
the position of the pole w, is given by the equation 1 —
(04G,,)? = 0. Solving this equation we find:

W, = — (wg B Qefzr/cla““\) — W, (18)
The peak is located at
Rew, = —wy + Qe—20/elo (19)

From this equation we see that the peak emerges inside
the pseudogap (|Rew.| < wy) which is consistent with the
phenomenology [18]. It is useful to re-write this equation
to exclude I

72wg/cA. (20)

Rew, = —wgy + f2e
In this form the peak position is presented as a function
of ‘low-energy’ quantities only. The formula does not con-
tain I" which characterizes the high-frequency asymptotics
of the Green’s function. We see that A introduced above
on rather heuristic basis has clear physical meaning: it
controls the position of the peak with respect to the pseu-
dogap edge. In [8] they also found that it is the supercon-
ducting energy scale that specifies the distance between
the pseudogap and the peak. This observation offers an
additional argument in support of the definition (15).
Another interesting property of our superconducting
state spectrum is its compliance with the sum rule (14).
Mathematical proof of this fact is given in Appendix.
Given this conservation of the spectral weight it is use-
ful to discuss its re-distribution upon the transition to
superconducting state. Visually, one can notice from Fig-
ures 2 and 3 that in the superconducting phase the spec-
tral weight is moved from low frequencies to high frequen-
cies: the depletion of the spectral weight at the dip is
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roughly compensated by its enhancement at the hump.
Experimentally, however, it is seen that the weight from
the dip goes into the peak. Further, we see on our figures
that the hight of the peak is of the same order as the
normal state spectral function. It is the presence of the
dip that separates the peak from the background. This is
very different from the experimental situation where the
intensity of the peak is substantially larger then the back-
ground. The reason for this discrepancy might be the lack
of exact knowledge about &. Particular, we are unable to
identify any first principal based constraint which would
provide us with any information about u. To keep our con-
sideration as simple as possible we chose to put u equal
to zero.

As we stressed the particle-hole symmetry (8) is only
an approximation. Thus, an interesting question worth
discussing is how deviations from (8) affect the peak in
the superconducting state. To address this issue we model
the electron spectral function as

i (@) = Anxe(w + dw), (21)

where A,k (w) is given by (13). In this case the pseudogap
for electrons is bigger then the pseudogap for holes by
the amount of 26w. The spectral function can be found
according to

e
°k = —2Im { nk }
sk 2 N
1*(‘7&4) Gizk nk

The resulting function for dw = 0.2w, and ¢ (w) = 25w,
is plotted in Figure 5. As one can see the only effect of the
asymmetry is uneven hight of the peaks for positive and
negative frequencies. The reason for this becomes clear if
one notice that (22) may be approximated in the manner
similar to (12):

(22)

A ,
1 (i) Re {GhCiu)

e ~

sk —

(23)

In order to demonstrate the quality of this approxima-
tion we plotted this expression in Figure 5. The denomina-
tor in (23) is symmetric with respect to the frequency sign
change. It has two minima located approximately at £wy.
Since Ag(wg) > AL (—wy) the peak at w < 0 is smaller. It
is now clear that the superconducting state spectrum is
rather robust with respect to small deviations from (8).

To understand why the peak appears at the tempera-
tures higher than 7, it is enough to imagine that in the
cuprates there is a temperature window Tioca1 > T > Te
where the phase coherence exists over some finite time
scale 7(T), 7 = o0 as T — T, (Tocal < T*, where T* is
the temperature for the pseudogap onset). Experimental
evidence of this was produced by [24]. Speaking more tech-
nically, in this temperature window one can use (9) with
non-zero o and fixed ¢ to describe the single-particle
dynamics on the time scale less than 7. For time peri-
ods bigger than 7 the dynamics of the phase ¢ cannot
be neglected anymore. If 7 is big enough one can sim-
ply average the propagator over the phase fluctuations.

The European Physical Journal B

Fig. 5. The effect of weak particle-hole asymmetry on the
superconducting spectral function. Normal state spectrum is
shifted to the left by amount of dw = 0.2wy. The values of pa-
rameters are: W/w, = 50, w™ = 00, we/wy = 0.1, 07 Jwy = 25
The normal state spectrum is given in a dash-line, the approx-
imation (23) is plotted in a dotted line.

For infinitely long time the anomalous propagator always
vanishes above T, due to the phase dynamics. However,
the peak in the photoemission spectrum does not vanish
since, as it follows from (11), it is independent of ¢.

5 Discussion

We study the ‘quasiparticle’ peak in the superconducting
state of the underdoped BSCCO. The main conclusion of
the present work is that the peak can be explained on the
basis of the normal state phenomenology. Our analysis is
based on four premises. First, we assume that the single
particle spectrum has a pseudogap (Fig. 1b). The most
important consequence of that is the peaks of the function
|[Re G, (w)] at the edges of the pseudogap.

Next, we assume that there is approximate symmetry
between positive-frequency and negative-frequency parts
of the spectrum (8). This guarantees that the function
—Re {Gy(w)Gr(—w)} has only one maximum at w < 0.
We also shown that some violation of (8) is not fatal for the
qualitative structure of the superconducting state spec-
trum.

Our third assumption is that the anomalous self-
energy o' is much bigger then the pseudogap energy Wg-
We argued that o4 does not necessary set the supercon-
ducting energy scale. Rather, this scale is set by the quan-
tity A ~ wgaA /T < oA. We draw support for this esti-
mate from theoretical analysis of superconducting systems
with strong scattering.

Finally, there is the fourth assumption we made im-
plicitly: the single-particle anomalous self-energy o (w)
does not go to zero near the edges of the pseudogap.
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If o does go to zero then the peak in the superconducting
phase could be completely suppressed (see (12)).

In order to explain the emergence of the peak at T > T,
we accepted another postulate. It was agreed that local or-
der parameter is established and it is permissible to use (9)
with fluctuating ¢ to describe the single-particle dynamics
in some temperature window above T..

The fact that the peak can be derived from the nor-
mal state properties suggests that it is not a fundamental
object. Moreover, depending on the circumstances it may
be absent or replaced by a less prominent feature [22].

It is also can be surmised that this phenomena may
not be limited to the cuprate superconductors only. The
peak could be present in the superconducting state of any
material which has a pseudogap in the normal state. In
such a material the origin of the pseudogap may be dif-
ferent form that of the cuprates — the mechanism of the
pseudogap formation is irrelevant for the formation of the
peak.

We did not try to fit any experimental data by our
curves from Figure 3 and Figure 4. It is not possible ow-
ing to the lack of knowledge about exact form of func-
tions (13). We also have no independent information about
the values of we, w™, 064 and p. As it was discussed the
knowledge of these quantities are necessary to describe
spectral weight re-distribution.

Another argument against feasibility of the spectrum
fit is a problem with the experimental data themselves. It
is known that the photoemission spectrum is a convolution
of the single-electron Green’s function and a photoemis-
sion matrix element. It has been assumed that this matrix
element is a constant, at least in a relevant range of pa-
rameters. Thus, relative intensities of different features of
the spectrum were believed to be free of any influence ex-
trinsic to the electron dynamics. However, it was shown
recently that the matrix element has very non-trivial de-
pendence on the photon energy and the binding energy of
the photoelectrons [25]. In such a situation the significance
of an intensity fit is substantially devaluated.

To conclude, we study the peak in the photoemission
spectrum of BSCCO. After making several phenomenolog-
ical assumptions we show that this peak is a consequence
of the normal state pseudogap. We derived the most ba-
sic properties of the peak and demonstrated that they
are in qualitative agreement with the experimental data
available.

Author is most grateful to D. Basov, A.J. Millis and J.E. Hirsch
for help and discussions.

Appendix

In this Appendix we will prove that under rather mild
assumptions on G,, and o4 the spectral function (11) sat-
isfies (14). In our derivation we will assume that u = 0.
This limitation is not crucial.

An essential part of our proof is the analyticity of both
Gn(w) and 04(w) for complex values of w,Im w > 0 (up-
per half-plane). First, we establish asymptotical behavior
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of Gy, at large |w|. If |w| > W the details of the spectral
function A(w) are irrelevant and it can be viewed as a delta
function times 27. This means that at large |w|, Im w > 0

+o00 By nw/
Gn(w):/ d_A( ):1'

Lo =
oo 2T W —w w

(24)

We see, that due to the sum rule (14) the residue of G,, at
infinity is exactly unity. Next, for any finite w* the same
reasoning can be applied to o4 with the result:
A _ -1

0" (w) = O(lw]7) (25)
for large |w|. We do not try to determine the residue of o
at infinity since it is of no interest to us. The asymptotical
behavior combined with the absence of any singularity in
the upper half-plane of complex w implies that both G,
and o are bounded:

o4 ()] < Co,
Gn(w)] < Cq

where Cj; ¢ are some real positive constants. Now we are
in position to prove that:

+oo
Im [ dw (Gs(w) — Gr(w)) =0, (28)

Gp(w)

Gs (w) = 1— (O-A(w))2(Gn(w))2’

(29)

provided that the product CgC, < 1. This inequality
guarantees that the denominator of G(w) never goes to
zero. Therefore, the integrand of (28) has no singularities
for Im w > 0. This means that we can transform the inte-
gration contour into a semi-circle in the upper half-plane.
The integral over the semi-circle of infinite radius equals
to the residue at infinity times (—m). We already know
that this residue is unity for G,,. It is also unity for G: at
large |w| the denominator is non-singular and approaches
1, thus, the leading asymptotic behavior of G4 is the same
as that of G,,. The residue of the integrand is zero which
proves (28).
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